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HD Latent Variable Models

Definition

Latent variables (or hidden variables) are random variables that are present in the underlying probabilistic
model of the data, but they are unobserved.

In high-dimensional data, there may be latent variables present that affect many variables simultaneously.

These are latent variables that induce systematic variation. A topic of much interest is how to estimate
these and incorporate them into further HD inference procedures.

Model

Suppose we have observed data Y ,,x, of m variables with n observations each. Suppose there are r latent
variables contained in the r rows of Z,,, where

E [Ym><n | Z’r‘><n] = @meran.

Let’s also assume that m > n > 7. The latent variables Z induce systematic variation in variable y;
parameterized by ¢, for i =1,2,... ,m.

Estimation

There exist methods for estimating the row space of Z with probability 1 as m — oo for a fixed n in two
scenarios.

Leek (2011) shows how to do this when y,|Z ~ MVN(¢,Z,021), and the y,;|Z are jointly independent.

Chen and Storey (2015) show how to do this when the y,;|Z are distributed according to a single parameter
exponential family distribution with mean ¢, Z, and the y,|Z are jointly independent.

Jackstraw

Suppose we have a reasonable method for estimating Z in the model

E)Y |Z]=®Z.

The jackstraw method allows us to perform hypothesis tests of the form

Hy:¢,=0vs Hy : ¢; #0.

We can also perform this hypothesis test on any subset of the columns of ®.

This is a challening problem because we have to “double dip” in the data Y, first to estimate Z, and second
to perform significance tests on ®.

Procedure

The first step is to form estimate Z and then test statistic #; that performs the hypothesis test for each
¢, from y, and Z (i =1,...,m). Assume that the larger ¢; is, the more evidence there is against the null
hypothesis in favor of the alternative.

Next we randomly select s rows of Y and permute them to create data set Y'°. Let this set of s variables be
indexed by S. This breaks the relationship between y, and Z, thereby inducing a true Hy, for each i € S.


http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2010.01455.x/abstract
https://arxiv.org/abs/1510.03497
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We estimate Z from Y and again obtain test statistics t. Specifically, the test statistics t9 for i € S are
saved as draws from the null distribution.

We repeat permutation procedure B times, and then utilize all saved sB permutation null statistics to
calculate empirical p-values:

Example: Yeast Cell Cycle

Recall the yeast cell cycle data from earlier. We will test which genes have expression significantly associated
with PC1 and PC2 since these both capture cell cycle regulation.

> library(jackstraw)
> load("./data/spellman.RData")
> time
[1] 0 30 60 90 120 150 180 210 240 270 330 360 390
> dim(gene_expression)
[1] 5981 13
> dat <- t(scale(t(gene_expression), center=TRUE, scale=FALSE))

Test for associations between PC1 and each gene, conditioning on PC1 and PC2 being relevant sources of
systematic variation.

> jsobj <- jackstraw_pca(dat, ri=1, r=2, B=500, s=50, verbose=FALSE)

> jsobj$p.value %>} qvalue() %>% hist()
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Test for associations between PC2 and each gene, conditioning on PC1 and PC2 being relevant sources of
systematic variation.

> jsobj <- jackstraw_pca(dat, ri=2, r=2, B=500, s=50, verbose=FALSE)
> jsobj$p.value %>} qvalue() %>% hist()



p—value density histogram
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This is the most significant gene plotted with PC2.

Variables

= g-values
=== |ocal FDR
— 1, =0.409



L ® PC2
® top gene
N —]
H —
c
i
(7))
(%))
N
S ®
(<B)
)
— _
|
°
~ °
N
°
I I I I I
0 100 200 300 40(

time

Surrogate Variable Analysis

The surrogate variable analysis (SVA) model combines the many responses model with the latent variable
model introduced above:

Ym><n = BdeXan + merzrxn + men

where m >n >d+r.

Here, only Y and X are observed, so we must combine many regressors model fitting techniques with latent
variable estimation.

The variables Z are called surrogate variables for what would be a complete model of all systematic
variation.
Procedure

The main challenge is that the row spaces of X and Z may overlap. Even when X is the result of a
randomized experiment, there will be a high probability that the row spaces of X and Z have some overlap.



Therefore, one cannot simply estimate Z by applying a latent variable esitmation method on the residuals
Y — BX or on the observed response data Y. In the former case, we will only estimate Z in the space
orthogonal to BX. In the latter case, the estimate of Z may modify the signal we can estimate in BX.

A recent method, takes an EM approach to esitmating Z in the model

Ym><n = BdeXan + (I)erZan + Em><n-

It is shown to be necessary to penalize the likelihood in the estimation of B — i.e., form shrinkage estimates
of B — in order to properly balance the row spaces of X and Z.

The regularized EM algorithm, called cross-dimensonal inference (CDI) iterates between

1. Estimate Z from Y — BRCgX

2. Estimate B from Y — ®Z

~ Reg . .
where B~ is a regularized or shrunken estimate of B.

It can be shown that when the regularization can be represented by a prior distribution on B then this
algorithm achieves the MAP.

Example: Kidney Expr by Age

In Storey et al. (2005), we considered a study where kidney samples were obtained on individuals across a
range of ages. The goal was to identify genes with expression associated with age.

library(edge)

library(splines)
load("./data/kidney.RData")

age <- kidcov$age

sex <- kidcov$sex

dim(kidexpr)

[1] 34061 72

> cov <- data.frame(sex = sex, age = age)
> null model <- ~sex

> full_model <- ~sex + ns(age, df = 3)

V V V V V V

> de_obj <- build_models(data = kidexpr, cov = cov,

+ null.model = null_model,

+ full.model = full_model)

> de_1lrt <- 1lrt(de_obj, nullDistn = "bootstrap", bs.its = 100, verbose=FALSE)
> qobjl <- gvalueObj(de_lrt)

> hist(qobjl)


http://dx.doi.org/10.1080/01621459.2011.645777
http://www.pnas.org/content/102/36/12837.full
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Now that we have completed a standard generalized LRT, let’s estimate Z (the surrogate variables) using
the sva package as accessed via the edge package.

> dim(nullMatrix(de_obj))

[11 72 2

> de_sva <- apply_sva(de_obj, n.sv=4, method="irw", B=10)

Number of significant surrogate variables is: 4

Iteration (out of 10 ):1 2 3 4 5 6 7 8 9 10

> dim(nullMatrix(de_sva))

[1] 72 6

> de_svalrt <- lrt(de_sva, nullDistn = "bootstrap", bs.its = 100, verbose=FALSE)

> gobj2 <- gvalueObj(de_svalrt)
> hist(qobj2)
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> summary (qobj1)

Call:
gvalue(p = pval)

pio: 0.8081212
Cumulative number of significant calls:

<le-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1

p-value 27 161 798 1676 2906 5271 34061
q-value 0 0 2 4 10 27 34061
local FDR 0 0 2 2 5 18 34061

> summary (qobj2)

Call:
qvalue(p = pval)

pi0: 0.6925105
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Cumulative number of significant calls:

<le-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1

p-value 28 151 1001 2051 3549 6168 34061
g-value 0 0 3 4 6 51 34061
local FDR 0 0 2 2 3 28 34053

P-values from two analyses are fairly different.

> data.frame(lrt=-logl0(qobjl$pval), sva=-loglO(qobj2%pval)) %>%
+ ggplot() + geom_point(aes(x=1rt, y=sva), alpha=0.3) + geom_abline()

6-
© @
e © @
@ @
o ® o
@
4_ o OOOSO - Ll ° OO °°) © (0]
@

o o OO 08 % ? 8 0 o) OOO ’
© g°e° C; © 9 % o O@O% e ’
> (0] (1" Od)@O (&} @ o %O OOO (o)
g PR b W LOF TR Y K Sl

@ Q @ @
& 7 Q@g oa&@ %Oﬁ@ . °
Pa . o
A OO o
21 o °
@
OO °
&
gfﬁo
%
(¢}
0-
0 2 4 6
Irt
Causality
Acknowledgement

These section is partially based on slides by Irineo Cabreros.

Definition

Informally, we might say X is causal for Y if a change in X influences a change in Y.
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However, a formal, statistically rigorous definition is challenging and controversial. We will consider one such
framework here, called the potential outcomes framework.

Correlation Is Not Causation

Number of people who drowned by

falling into a pool
correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)
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tylervigen.com

From http://tylervigen.com/spurious-correlations.

Reasons For Nonzero Correlation

 Spurious correlation: Cor(X,Y’) =0, however observed 75, # 0
e XcausesY: X =Y

e Y causes X: YV =+ X

e X and Y are confounded by Z: X < Z =Y

Potential Outcomes

For each observed unit, four random variables are drawn:

(Xa}/(LYlaY)

X and Y are observed, Y and Y; are potential outcomes.

These random variables are related to each other:
Y=Y1(X=0+YV1(X=1)

Causal Quantities of Interest

Causal effect (CE):

CE=Y, - Y,

Average (expected) causal effect (ACE):

12


http://tylervigen.com/spurious-correlations

ACE = E[i] - E[¥;]

Estimable Quantities
“Regression” of Y on X in statistics often refers to modeling E[Y|X].

Regression effect (RE):
RE=[Y|X =1] - [Y|X =0
Average regression effect (ARE):

ECE =E[Y|X = 1] - E[Y|X = 0]

These are not causal quantities.

Causal Inference: Fundamental Challenge

Suppose the following five configurations are equally likley.

X Yo 1

OO = = O
=== O
O~~~ O
e =R

ACE=10+1+1+140)—104+0+1+1+1)=0
ARE=3(1+1)—-1(0+1+1)=3

Randomization

From Greenberg (2018) The Omega Principle: Seafood and the Quest for a Long Life and a Healthier Planet:

“In 1747 the physician James Lind, sailing aboard a British warship, divided a group of 12 sailors suffering
from scurvy into six groups of two. All ate the same diet, but each pair was given a different supplemental
potion: one pair got a quart of cider, another an elixir of sulfuric acid, another six spoonfuls of vineger,
another a pint of seawater, still another a spicy paste together with barley water, and finally the lucky
last—two oranges and a lemon.”

ACE Equals ARE Under Randomization

Suppose X is decided by a physical coin toss, which can be assumed independent of all potential outcome
random variables.

13



ARE =E[Y|X =1] - E[Y|X = (]
=EYWl(X=0+V1(X=1)]X=1]-
E[Yol(X = 0) + V11(X = 1)|X = 0]
— E[Vi|X = 1] - E[Yo|X =0
= E[Y1] — E[Y0]
= ACE
Under this set-up, it can be shown that Cor(X,Y’) # 0 implies E[Y|X = 1] — E[Y|X = 0] # 0.

So in this case and with randomization of X, it follows that a non-zero population correlation implies X is
causal for Y under the potential outcomes model.

Summary of QCB 408 / 508

What Did We Do?

o Utilized R

o Random variables

e Probability models

o Likelihood based inference: frequentist and Bayesian
e Specialized frequentist inference

e Numerical methods for inference

e Statistical modeling

o High-dimensional inference and modeling

e Causality

R

Advanced R, Wickham

R Packages, Wickham

Introductory Statistics with R, Dalgaard
R Cookbook, Teetor

Visualization
R Graphics Cookbook, Chang
Visualizing Data, Cleveland

The Visual Display of Quantitative Information, Tufte

Modeling
Statistical Models: Theory and Practice, Freedman

Nonparametric Regression and Generalized Linear Models: A roughness penalty approach, Green and Silverman

Bayesian Data Analysis, Gelman et al.
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http://adv-r.had.co.nz
http://www.amazon.com/Introductory-Statistics-R-Computing/dp/0387790535/
http://shop.oreilly.com/product/9780596809164.do
http://www.cookbook-r.com
http://amzn.com/0963488406
http://amzn.com/0961392142
http://www.amazon.com/Statistical-Models-Practice-David-Freedman/dp/0521743850/
http://www.amazon.com/Nonparametric-Regression-Generalized-Linear-Models/dp/0412300400/
http://www.amazon.com/Bayesian-Analysis-Chapman-Statistical-Science/dp/1439840954/

Statistical Inference

All of Statistics, Wasserman

Statistical Inference, Casella and Berger

An Introduction to the Bootstrap, Efron and Tibshirani
A First Course in Bayesian Statistical Methods, Hoff

Machine Learning

An Introduction to Statistical Learning: with Applications in R, James et al.
Elements of Statistical Learning, Hastie, Tibshirani, and Friedman

Machine Learning: A Probabilistic Perspective, Murphy

Pattern Recognition and Machine Learning, Bishop

Extras

Source
License

Source Code

Session Information

> sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-apple-darwini5.6.0 (64-bit)
Running under: macOS 10.15.3

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/1ib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/1ib/1libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] jackstraw_1.3 qvalue_2.15.0 MASS_7.3-51.5
[4] broom_0.5.2 forcats_0.5.0 stringr_1.4.0
[7] dplyr_0.8.4 purrr_0.3.3 readr_1.3.1
[10] tidyr_1.0.2 tibble_2.1.3  ggplot2_3.2.1
[13] tidyverse_1.3.0 knitr_1.28

loaded via a namespace (and not attached):

[1] rsvd_1.0.3 Repp_1.0.3 1fa_1.12.0
[4] lubridate_1.7.4 1lattice_0.20-40 corpcor_1.6.9
[7] gtools_3.8.1 assertthat_0.2.1 digest_0.6.25

15


http://www.amazon.com/All-Statistics-Statistical-Inference-Springer/dp/0387402721/
http://www.amazon.com/Statistical-Inference-Wadsworth-Statistics-Probability/dp/0534119581/
http://www.amazon.com/Introduction-Bootstrap-Monographs-Statistics-Probability/dp/0412042312/
http://amzn.com/0387922997
http://www-bcf.usc.edu/~gareth/ISL/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738/
https://github.com/jdstorey/asdslectures/blob/master/LICENSE.md
https://github.com/jdstorey/asdslectures/

[10] gmp_0.5-13.6 R6_2.4.1 cellranger_1.1.0

[13] plyr_1.8.5 backports_1.1.5 reprex_0.3.0
[16] evaluate_0.14 httr_1.4.1 pillar_1.4.3
[19] rlang 0.4.5 lazyeval_0.2.2 readxl_1.3.1
[22] irlba_2.3.3 rstudioapi_0.11 Matrix_1.2-18
[25] rmarkdown_ 2.1 labeling 0.3 splines_3.6.0
[28] ClusterR_1.2.1 munsell_0.5.0 compiler_3.6.0
[31] modelr_0.1.6 xfun_0.12 pkgconfig_2.0.3
[34] htmltools_0.4.0 tidyselect_1.0.0 fansi_0.4.1
[37] crayon_1.3.4 dbplyr_1.4.2 withr_2.1.2
[40] grid_3.6.0 nlme_3.1-144 jsonlite_1.6.1
[43] gtable_0.3.0 lifecycle_0.1.0 DBI_1.1.0

[46] magrittr_1.5 scales_1.1.0 cli_2.0.2

[49] stringi_1.4.6 farver_2.0.3 reshape2_1.4.3
[62] fs_1.3.1 xml2_1.2.2 generics_0.0.2
[65] vctrs_0.2.3 tools_3.6.0 glue_1.3.1
[68] hms_0.5.3 parallel_3.6.0 yaml_2.2.1

[61] colorspace_1.4-1 cluster_2.1.0 rvest_0.3.5
[64] haven_2.2.0
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