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OLS in R

Example: Davis Data

data("Davis", package="carData")
htwt <- tbl_df (Davis)
htwt[12,c(2,3)] <- htwt[12,c(3,2)]
head (htwt)

A tibble: 6 ¢ 5

sex weight height repwt repht
<fct> <int> <int> <int> <int>
77 182 77 180
58 161 51 159
53 161 54 158
68 177 70 175
59 157 59 155
76 170 76 165

# V V V V
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R implements OLS of multiple explanatory variables exactly the same as with a single explanatory variable,
except we need to show the sum of all explanatory variables that we want to use.

> Im(weight ~ height + sex, data=htwt)

Call:
Im(formula = weight ~ height + sex, data = htwt)

Coefficients:
(Intercept) height sexM
-76.6167 0.8106 8.2269

Weight Regressed on Height 4+ Sex
> summary (lm(weight ~ height + sex, data=htwt))

Call:
Im(formula = weight ~ height + sex, data = htwt)

Residuals:
Min 1Q Median 3Q Max
-20.131 -4.884 -0.640 5.160 41.490

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) -76.6167 15.7150 -4.875 2.23e-06 ***

height 0.8105 0.0953 8.506 4.50e-15 *x*x*
sexM 8.2269 1.7105 4.810 3.00e-06 *x*x
Signif. codes: O '*x**' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.066 on 197 degrees of freedom
Multiple R-squared: 0.6372, Adjusted R-squared: 0.6335
F-statistic: 173 on 2 and 197 DF, p-value: < 2.2e-16



Residual Distribution

> myfit <- Im(weight ~ height + sex, data=htwt)

> plot(myfit, which=1)
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Normal Residuals Check

> plot(myfit, which=2)

Fitted values
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One Variable, Two Scales

We can include a single variable but on two different scales:

> htwt <- htwt %>’ mutate(height2 = height~2)
> summary(lm(weight ~ height + height2, data=htwt))

Call:
Im(formula = weight ~ height + height2, data = htwt)

Residuals:
Min 1Q Median 3Q Max
-24.265 -5.159 -0.499 4.549 42.965

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 107.117140 175.246872 0.611 0.542
height -1.632719 2.045524 -0.798 0.426
height?2 0.008111 0.005959 1.361 0.175




Residual standard error: 8.486 on 197 degrees of freedom
Multiple R-squared: 0.5983, Adjusted R-squared: 0.5943
F-statistic: 146.7 on 2 and 197 DF, p-value: < 2.2e-16

Interactions

It is possible to include products of explanatory variables, which is called an interaction.

> summary(lm(weight ~ height + sex + height:sex, data=htwt))

Call:
Im(formula = weight ~ height + sex + height:sex, data = htwt)

Residuals:
Min 1Q Median 3Q Max
-20.869 -4.835 -0.897 4.429 41.122

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) -45.6730 22.1342 -2.063 0.0404 *

height 0.6227 0.1343 4.637 6.46e-06 *x**

sexM -55.6571 32.4597 -1.715 0.0880 .

height:sexM  0.3729 0.1892 1.971 0.0502 .

Signif. codes: 0 '#*x' 0.001 's*x' 0.01 'x' 0.056 '.' 0.1 " ' 1

Residual standard error: 8.007 on 196 degrees of freedom
Multiple R-squared: 0.6442, Adjusted R-squared: 0.6388
F-statistic: 118.3 on 3 and 196 DF, p-value: < 2.2e-16

More on Interactions

What happens when there is an interaction between a quantitative explanatory variable and a factor
explanatory variable? In the next plot, we show three models:

e Grey solid: 1m(weight ~ height, data=htwt)
e Color dashed: 1m(weight ~ height + sex, data=htwt)
o Color solid: 1m(weight ~ height + sex + height:sex, data=htwt)



Visualizing Three Different Models
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Categorical Explanatory Variables
Example: Chicken Weights

> data("chickwts", package="datasets")
> head(chickwts)
weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

5 217 horsebean

6 168 horsebean

> summary(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower

12 10 12 11 14

12

190

sex
== [

mem |\



Factor Variables in 1m()

> chick_fit <- Ilm(weight ~ feed, data=chickwts)
> summary (chick_fit)

Call:
Im(formula = weight ~ feed, data = chickwts)

Residuals:
Min 1Q Median 3Q Max
-123.909 -34.413 1.571 38.170 103.091

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 323.583 15.834 20.436 < 2e-16 ***
feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
feedlinseed -104.833 22.393 -4.682 1.49e-05 #***
feedmeatmeal -46.674 22.896 -2.039 0.045567 *
feedsoybean -77.155 21.578 -3.576 0.000665 ***
feedsunflower 5.333 22.393 0.238 0.812495
Signif. codes: O 's#xx' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54.85 on 65 degrees of freedom
Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

Plot the Fit

> plot(chickwts$feed, chickwts$weight, xlab="Feed", ylab="Weight", las=2)
> points(chickwts$feed, chick_fit$fitted.values, col="blue", pch=20, cex=2)
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ANOVA (Version 1)

ANOVA (analysis of variance) was originally developed as a statistical model and method for comparing
differences in mean values between various groups.

ANOVA quantifies and tests for differences in response variables with respect to factor variables.

In doing so, it also partitions the total variance to that due to within and between groups, where groups are
defined by the factor variables.

anoval()

The classic ANOVA table:

> anova(chick_fit)
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
feed 5 231129 46226 15.365 5.936e-10 **x*
Residuals 65 195556 3009



Signif. codes: 0 '#*x' 0.001 '**x' 0.01 'x' 0.05 '.' 0.1 " '

> n <- length(chick_fit$residuals) # n <- 71

> (n-1)*var(chick_fit$fitted.values)

[1] 231129.2

> (n-1)*var(chick_fit$residuals)

[1] 195556

> (n-1)*var(chickwts$weight) # sum of above two quantities
[1] 426685.2

> (231129/5)/(195556/65) # F-statistic

[1] 15.36479

How It Works

> levels(chickuwts$feed)
[1] "casein" "horsebean" "linseed" "meatmeal" "soybean"
[6] "sunflower"
> head(chickwts, n=3)
weight feed
1 179 horsebean
2 160 horsebean
3 136 horsebean
> tail(chickwts, n=3)
weight  feed
69 222 casein
70 283 casein
71 332 casein
> x <- model.matrix(weight ~ feed, data=chickwts)
> dim(x)
[1] 71 6

Top of Design Matrix

> head(x)
(Intercept) feedhorsebean feedlinseed feedmeatmeal
1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 1 1 0 0
5 1 1 0 0
6 1 1 0 0
feedsoybean feedsunflower
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

10
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Bottom of Design Matrix

> tail(x)
(Intercept) feedhorsebean feedlinseed feedmeatmeal
66 1 0 0 0
67 1 0 0 0
68 1 0 0 0
69 1 0 0 0
70 1 0 0 0
71 1 0 0 0
feedsoybean feedsunflower
66 0 0
67 0 0
68 0 0
69 0 0
70 0 0
71 0 0
Model Fits

> chick_fit$fitted.values 7>} round(digits=4) %>, unique()
[1] 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833

> chickwts %>, group_by(feed) %>, summarize(mean(weight))
# A tibdble: 6 = 2

feed “mean(weight) "

<fct> <dbl>
1 casein 324.
2 horsebean 160.
3 linseed 219.
4 meatmeal 277.
5 soybean 246.
6 sunflower 329.

Another ANOVA Function

> aov(weight ~ feed, data=chickwts)
Call:
aov(formula = weight ~ feed, data = chickwts)

Terms:

feed Residuals
Sum of Squares 231129.2 195556.0
Deg. of Freedom 5 65

Residual standard error: 54.85029
Estimated effects may be unbalanced

> summary (aov(weight ~ feed, data=chickwts))

Df Sum Sq Mean Sq F value Pr(>F)
feed 5 231129 46226  15.37 5.94e-10 #***
Residuals 65 195556 3009

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

11



Compare to:

> anova(lm(weight ~ feed, data=chickwts))
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
feed 5 231129 46226 15.365 5.936e-10 *x**
Residuals 65 195556 3009

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

Variable Transformations

Rationale

In order to obtain reliable model fits and inference on linear models, the model assumptions described earlier
must be satisfied.

Sometimes it is necessary to transform the response variable and/or some of the explanatory variables.

This process should involve data visualization and exploration.

Power and Log Transformations

It is often useful to explore power and log transforms of the variables, e.g., log(y) or y* for some A (and
likewise log(z) or ).

You can read more about the Box-Cox family of power transformations.

Diamonds Data

> data("diamonds", package="ggplot2")

> head(diamonds)
# A tidbble: 6 = 10
carat cut color clarity depth table price X y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 1Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Prem~ E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E Vs1 56.9 65 327 4.05 4.07 2.31
4 0.290 Prem~ I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very~ J VVS2 62.8 57 336 3.94 3.96 2.48

Nonlinear Relationship

> ggplot(data = diamonds) +
+  geom_point (mapping=aes(x=carat, y=price, color=clarity), alpha=0.3)

12
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Regression with Nonlinear Relationship
> diam_fit <- lm(price ~ carat + clarity, data=diamonds)
> anova(diam_fit)
Analysis of Variance Table
Response: price
Df Sum Sq Mean Sq F value Pr (>F)
carat 1 7.2913e+11 7.2913e+11 435639.9 < 2.2e-16 **x*
clarity 7 3.9082e+10 5.5831e+09 3335.8 < 2.2e-16 *xx*
Residuals 53931 9.0264e+10 1.6737e+06
Signif. codes: 0 '#*x' 0.001 's*x' 0.01 'x' 0.05 '.' 0.1 " ' 1

Residual Distribution

> plot(diam_fit, which=1)

13
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Normal Residuals Check

> plot(diam_fit, which=2)
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Standardized residuals
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Theoretical Quantiles

Log-Transformation

> ggplot(data = diamonds) +

+
+
+

geom_point(aes(x=carat, y=price, color=clarity), alpha=0.3) +
scale_y_logl0(breaks=c(1000,5000,10000)) +
scale_x_logl0(breaks=1:5)

15
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OLS on Log-Transformed Data

> diamonds <- mutate(diamonds, log_price = log(price, base=10),

+ log_carat = log(carat, base=10))

> ldiam_fit <- 1m(log_price ~ log_carat + clarity, data=diamonds)
> anova(ldiam_fit)

Analysis of Variance Table

Response: log_price

Df Sum Sq Mean Sq F value Pr(>F)
log_carat 1 9771.9 9771.9 1452922.6 < 2.2e-16 ***
clarity 7 339.1 48.4 7203.3 < 2.2e-16 ***
Residuals 53931 362.7 0.0

Signif. codes: O '#*x' 0.001 '*x*x' 0.01 'x' 0.05 '.' 0.1 " ' 1

Residual Distribution

> plot(ldiam_fit, which=1)

16
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Normal Residuals Check

> plot(ldiam_fit, which=2)
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Theoretical Quantiles

Tree Pollen Study

Suppose that we have a study where tree pollen measurements are averaged every week, and these data are
recorded for 10 years. These data are simulated:

> pollen_study
# A tibble: 520 =z 3
week year pollen
<int> <int> <dbl>
2001 1842.
2001 1966.
2001 2381.
2001 2141.
2001 2210.
2001 2585.
2001 2392.
2001 2105.
2001 2278.
2001 2384.
with 510 more rows
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Tree Pollen Count by Week

> ggplot(pollen_study) + geom_point(aes(x=week, y=pollen))
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A Clever Transformation

We can see there is a linear relationship between pollen and week if we transform week to be number of
weeks from the peak week.

> pollen_study <- pollen_study %>%
+ mutate (week_new = abs(week-20))

Note that this is a very different transformation from taking a log or power transformation.

week Transformed

> ggplot(pollen_study) + geom_point(aes(x=week_new, y=pollen))

19
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OLS Goodness of Fit

Pythagorean Theorem

Figure 1: PythMod

Least squares model fitting can be understood through the Pythagorean theorem: a2 + b> = ¢?. However,

here we have:
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where the Y; are the result of a linear projection of the Y;.

OLS Normal Model
In this section, let’s assume that (X1,Y7),..., (X, Y,) are distributed so that

Yi =81 X+ BoXio+ ...+ BpXip + E;
=X,B+E;

where E|X ~ MVN,,(0,0%I). Note that we haven’t specified the distribution of the X; rv’s.

Projection Matrices

In the OLS framework we have:

Yy =X(XTx)'xTy.

The matrix P,xn, = X(XTX)’lXT is a projection matrix. The vector Y is projected into the space
spanned by the column space of X.

Project matrices have the following properties:

e P is symmetric

e P is idempotent so that PP = P

e If X has column rank p, then P has rank p

e The eigenvalues of P are p I’'sand n —p 0’s

e The trace (sum of diagonal entries) is tr(P) = p
e I — P is also a projection matrix with rank n —p

Decomposition
Note that P(I — P)=P - PP=P— P =0.
We have

IYI2=Y"Y = (PY + (I - P)Y)T(PY + (I - P)Y)
= (PY)"(PY)+((I-P)Y)"((I-P)Y)
= |PY|;+ (I - P)Y|3

where the cross terms disappear because P(I — P) = 0.

Note: The £, norm of an n-vector w is defined as

n 1/p
|wll, = (Z wil”) :
i=1

Above we calculated

n
lwl3 = w.
i=1

21



Distribution of Projection

Suppose that Y7,Ys, ..., Y, - Normal(0, 0%). This can also be written as Y ~ MVN,,(0,02I). It follows
that

PY ~ MVN,(0,62PIP").

where PIPT = PPT = PP = P.

Also, (PY)T(PY) =Y TPTPY = YT PY, a quadratic form. Given the eigenvalues of P, YT PY is
equivalent in distribution to p squared iid Normal(0,1) rv’s, so

Yy'py

2 Xp-

g

Distribution of Residuals
If PY =Y are the fitted OLS values, then (I — P)Y =Y — Y are the residuals.
It follows by the same argument as above that

YT (I - P)Y

2
o2 ~ Xn—p-

It’s also straightforward to show that (I — P)Y ~ MVN,,(0,0%(I — P)) and Cov(PY,(I — P)Y) =0.

Degrees of Freedom
The degrees of freedom, p, of a linear projection model fit is equal to

e The number of linearly dependent columns of X
e The number of nonzero eigenvalues of P (where nonzero eigenvalues are equal to 1)
o The trace of the projection matrix, tr(P).

The reason why we divide estimates of variance by n — p is because this is the number of effective independent
sources of variation remaining after the model is fit by projecting the n observations into a p dimensional
linear space.

Submodels
Consider the OLS model Y = X 8 + E where there are p columns of X and 8 is a p-vector.

Let X be a subset of pg columns of X and let X be a subset of p; columns, where 1 < py < p; < p. Also,
assume that the columns of X are a subset of X ;.

We can form f’o = PyY where Py is the projection matrix built from X;. We can analogously form
Y, =P\Y.

Hypothesis Testing

Without loss of generality, suppose that By = (81, 82, .-, Bp,) T and By = (81, Bay-- -, Bpy ).

How do we compare these models, specifically to test Ho : (Bpo+1:Bpot2s---,0p) = 0 vs Hy

(B;D0+1> Bpo+27 cee 75;;1) 7é 07

The basic idea to perform this test is to compare the goodness of fits of each model via a pivotal statistic.
We will discuss the generalized LRT and ANOVA approaches.

22



Generalized LRT

Under the OLS Normal model, it follows that 8, = (X X ) ' XY is the MLE under the null hypothesis
and B, = (X7 X1)"'XTY is the unconstrained MLE. Also, the respective MLEs of ¢ are

Z;L:l(}/i B YO,%‘)2

2:
0 n

Q>

s (Vi —Yi)?
L= n

S

where yo = XOBO and YAvl = Xlﬁl-
The generalized LRT statistic is

where 2log \(X,Y) has a Xf,lfpo null distribution.

Nested Projections

We can apply the Pythagorean theorem we saw earlier to linear subspaces to get:
Y3 = I - P)Y|3+ | P.Y]3
= (I = P)Y5+ [(P1 = Po)Y |5 + | PoY[|3

We can also use the Pythagorean theorem to decompose the residuals from the smaller projection Py:
I(I = Po)Y |5 = (I = P)Y|3+[|(P1— Po)Y|3

F Statistic

The F statistic compares the improvement of goodness in fit of the larger model to that of the smaller model
in terms of sums of squared residuals, and it scales this improvement by an estimate of ¢2:

(I = Po)Y |3 — |(I = P)Y 3] /(p1 — po)
(I = P1)Y|5/(n —p1)
{2?21(5@ —Yo,0)2 = o, (Vi — ?1,1‘)2] /(p1 — po)
S (Vi = Y1)/ (n —py)

Since ||(I — Po)Y||3 — (I — P1)Y||3 = ||(P1 — Po)Y |3, we can equivalently write the F statistic as:

F =

g 1P Po)Y |3/ (p1 — po)
(I = P)Y|3/(n—p1)
_ Y (Vi = Y0,)%/(p1 = po)
Sy (Vi = Y102/ (n — p1)
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F Distribution

Suppose we have independent random variables V ~ x% and W ~ x?. It follows that

V/a
Wb~

Fa,b

where Fy,; is the F' distribution with (a,b) degrees of freedom.
By arguments similar to those given above, we have

[(P1— Po)Y |3 2

~ X _
0.2 P1—Po

@ -POYIE

o2 n—pi

and these two rv’s are independent.

F Test
Suppose that the OLS model holds where E|X ~ MVN,, (0, c2I).

In order to test Hy : (Bpo+1,Ppo+2s---58p) = 0 vs Hi : (Bpo+1, Bpo+2, - - -
statistic as given above, which has null distribution Fj,, _p; n—p,. The p-value is calculated as Pr(F* > F)

where F' is the observed F statistic and F'™* ~ Fp, _p0 n—p, -

. Bp) # 0, we can form the F'

If the above assumption on the distribution of E|X only approximately holds, then the F' test p-value is also

an approximation.

OLS Goodness of Fit: R

Example: Davis Data

data("Davis", package="carData")
htwt <- tbl_df(Davis)
htwt[12,c(2,3)] <- htwt[12,c(3,2)]
head (htwt)

A tibble: 6 ¢ 5

sex weight height repwt repht
<fct> <int> <int> <int> <int>
77 182 77 180
58 161 51 159
53 161 54 158
68 177 70 175
59 157 59 155
76 170 76 165

# V V V V

O U1 W N -
=T =TT R

Comparing Linear Models in R
Example: Davis Data

Suppose we are considering the three following models:
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> f1 <- 1m(weight ~ height, data=htwt)
> f2 <- Im(weight ~ height + sex, data=htwt)
> £3 <- Im(weight ~ height + sex + height:sex, data=htwt)

How do we determine if the additional terms in models £2 and £3 are needed?

ANOVA (Version 2)

A generalization of ANOVA exists that allows us to compare two nested models, quantifying their differences
in terms of goodness of fit and performing a hypothesis test of whether this difference is statistically significant.

A model is nested within another model if their difference is simply the absence of certain terms in the smaller
model.

The null hypothesis is that the additional terms have coefficients equal to zero, and the alternative hypothesis
is that at least one coefficient is nonzero.

Both versions of ANOVA can be described in a single, elegant mathematical framework.

Comparing Two Models with anova()

This provides a comparison of the improvement in fit from model £2 compared to model f£1:

> anova(f1l, £2)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex
Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 14321
2 197 12816 1 1504.9 23.133 2.999e-06 **x*

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

When There’s a Single Variable Difference

Compare above anova(f1, f2) p-value to that for the sex term from the £2 model:

> library(broom)

> tidy(£2)
# A tibble: 3z 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -76.6 15.7 -4.88 2.23e- 6
2 height 0.811 0.0953 8.51 4.50e-15
3 sexM 8.23 1.71 4.81 3.00e- 6

Calculating the F-statistic

> anova(fi, f2)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex

Res.Df RSS Df Sum of Sq F Pr (>F)
1 198 14321
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2 197 12816 1 1504.9 23.133 2.999e-06 *x*x*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

How the F-statistic is calculated:

> n <- nrow(htwt)

> ssl <- (n-1)#*var(fi$residuals)

> ssi

[1] 14321.11

> 882 <- (n-1)#*var(f2$residuals)

> ss2

[1] 12816.18

> ((ss1 - ss2)/anova(f1l, £2)$Df[2])/(ss2/f2$df.residual)
[1] 23.13253

Calculating the Generalized LRT

> anova(fl, f2, test="LRT")
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex
Res.Df RSS Df Sum of Sq Pr(>Chi)
1 198 14321
2 197 12816 1 1504.9 1.512e-06 **x*

Signif. codes: O '*x**' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

> library(lmtest)
> lrtest(f1, £f2)
Likelihood ratio test

Model 1: weight ~ height
Model 2: weight ~ height + sex
#Df LogLik Df Chisq Pr(>Chisq)
1 3 -710.9
2 4 -699.8 1 22.205  2.45e-06 **x*

Signif. codes: O '*x**' 0.001 '#*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

These tests produce slightly different answers because anova () adjusts for degrees of freedom when estimating
the variance, whereas 1rtest () is the strict generalized LRT. See here.

ANOVA on More Distant Models

We can compare models with multiple differences in terms:

> anova(f1l, £3)
Analysis of Variance Table

Model 1: weight ~ height

Model 2: weight ~ height + sex + height:sex
Res.Df RSS Df Sum of Sq F Pr(>F)

1 198 14321
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2 196 12567 2 1754 13.678 2.751e-06 ***

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

Compare Multiple Models at Once

We can compare multiple models at once:

> anova(f1l, f2, £3)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex
Model 3: weight ~ height + sex + height:sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 14321
2 197 12816 1 1504.93 23.4712 2.571e-06 **x*
3 196 12567 1 249.04 3.8841 0.05015 .

Signif. codes: O '*x**' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Monogenic Trait Model
Genotypes Under HWE

Let X be a rv representing a SNP genotype, coded as a reference allele count: X € {0, 1, 2}.
Under Hardy-Weinberg equilibrium (HWE), we have shown that

X ~ Binomial(2, p)

where p is the allele frequency of the reference allele. Recall that E[X]| = 2p, Var[X] = 2p(1 — p).

Inbreeding

We also considered a population-level inbreeding model, where f is the probability that the alleles are
identical-by-descent (IBD) and p is the ancestral population allele frequency. In this case:

Pr(X=0)=(1-p)*+p1l—-p)f
Pr(X =1)=2p(1-p)(1~-f)
Pr(X =2)=p*+p(l—p)f

Recall that E[X] = 2p and Var[X] = 2p(1 —p)(1 + f).

Kinship

Define the kinship between two individuals to be the probability that random alleles (at a ranom locus), one
chosen from each of two individuals, are IBD.

Denote the kinship probability by the parameter ¢.
The kinship of an individual with itself is ¢ = (1 + f).
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Kinship Examples

Assume that the founders of a pedigree are unrelated and no one is inbred.

Realtionship 10}

Self 1/2
Parent / child 1/4
Siblings 1/4

Half-siblings 1/8
First cousins  1/16

Covariance of Genotypes

Consider individuals j and &, with genotypes X; and X}, and kinship ¢;;. It can be shown that:

Cov[X;, Xi] = 4p(1 — p)dji
Prove the above as an exercise. Note that
Var[X;] = Cov[X, Xj]
=4p(1 — p)o;;

—4p(1 = p)5(1+ £5) =201 = p)(1 + )

Additive Trait Model

Let X1, Xa,..., X, come from the above genotype model. Assume that Ei, Fs, ..., E, N Normal(0, 02),
and X and F are independent.

Generate trait values Y1,Ys,...,Y, by:
Yj =a+ ,BX]‘ + Ej.
This assumes additive effects only from the genetic locus.

General Trait Model

If we allow for additive and dominance effects, then we can write this as:

Yj = fo+ Ail(X; =1) + B 1(X; =2) + Ej.

However, we will only consider the additive model.

OLS and Dependence

Note that if ¢;, > 0, then Y; and Y}, are dependent random variables because X; and X, are dependent
random variables.

However, by our assumptions, F;|X; = E;Vj and E4, Es,...,E, i Normal(0, 02). Thus, the assumptions
of OLS are met.

In what sense is OLS useful and not useful in this setting?
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Variance of Trait

Even the alleles within an individual can be dependent, so

VarlY;] = Var[a + X, + E;]
= Var[8X,] + Var[E}]
= 2 Var[X;] + o2
= %4p(1 — p)oj; + o2
=2[3*2p(1 - p)] ¢, + 02

Variance Decomposition

Let 02 = 322p(1 — p) be the additive genetic variance and o2 be the non-genetic variance.

We then have that
VarlY;] = 2026, + o7
and when individual j is not inbred, then ¢,; = 1/2 and
VarlY;] = o2 + o2.

Covariance of Trait
Cov|Y;,Yy] = Covia + X + Ej, a + X}, + E]
= Cov[BX;, BXy] + Cov[E};, Ey]
= /32 Cov[X;, Xi]
= 324p(1 — p)ojn
=2 [8°2p(1 - p)] ¢k

= 203%‘1@

Multivariate Distribution of Trait
Putting this all together, we have that:

Y|X ~ MVN, (ol + 8X,021)
E[Y] = al +2ps1

Var[Y] = 202® + o1

where E[Y;] = a4+ SE[X;] = a+ 2pf and ® is the n x n kinship matrix with (j, k) entry equal to ;.
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Heritability
Conceptually, heritability is a measure of the proportion of variation in a trait attributable to genetics.

Broad sense heritability involves terms from the trait model that includes dominance effects. Narrow

sense heritability is defined as
2
a

2 2
o5+ 0

ag

since Var[Y] = 02 + 02 when the individual is outbred.

Polygenic Trait Model

Fisher (1918)

In the Fisher (1918) paper, RA Fisher developed a polygenic linear model of the genetic basis of a quantitative
trait. In doing so, he resolved the dispute between “blending inheritance” from the biometric school and
discrete inheritance from the Mendelian school. This paved the way for modern genetics as it is practiced
today.

Fisher (1918) was the first genomics paper.

Fisher’s polygenic trait model is the primary model used in GWAS analyses and estimates of genome-wide
inheritance today — over 100 years later!

Fisher’s polygenic model lead him to formulating a precise mathermatical description of Darwinian selection
in terms of genetic inheritance as we understand it today.

Assumptions

We now consider the additive trait model where there are m independent SNPs contributing to the trait.
For each SNP i = 1,2,...,m, there are genotypes X;1, X;2, ..., X;, corresponding to the n individuals. The
ancestral allele frequency of SNP ¢ is p;, and the dependence among the X1, Xjo, ..., X;, is parameterized
by the n x n kinship matrix ®, as in the single locus model.

Again, let F1, Fs, ..., E, £ Normal(0, 02) and generate trait values Y1,Ys,...,Y, by:
m
Y =a+)» BiXi+Ej
i=1

This again assumes additive effects only.

Variance of Trait

VaI‘[Y}] = Var[a + ZﬁlX” + E]]

i=1

= ZVar[ﬂiXij] + Var[Ej]

i=1

= B7 Var[X,;] + o?
=1

= Zﬁ?‘lpi(l —pi)dj; + 0l
=1

2 [25522%(1 —pi)| ¢ + 00
=1
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Heritability

Noting that we now have
m

ol =Y B2pi(1—pi),

i=1
narrow sense heritability in the polygenic model is still defined as

2
Og

2 2
os+ 0

since Var[Y] = 02 + 02 when the individual is outbred.

Covariance of Trait

a—i—ZﬁiXij +Ej,04+26ixik + Ej

i=1 i=1

> BiXig, Y BiXin

i=1 i=1

= Cov[Bi X, BiXix] = D B} Cov [Xij, Xi]
=1

i=1

Cov[Y;, Y] = Cov

= Cov + Cov[Ej, Ex]

= BHpi(1—pi)djk =2 [Z B72pi(1 — pi)] Pk
i=1

i=1
= 20§¢jk
Normal Approximation

In the model V; = o + Z:’;l BiXi; + Ej, Fisher noted that each term £;X;; is an instance of Mendelian
inheritance.

However, taken as a whole and applying the CLT, Y"1, 3;X;; can be treated as an instance of approximately
continuous inheritance.

This yielded the MVN approximation

Y <~ MVN, (a1 + 2pp1,202® + o21),

and allowed Fisher to unify the biometric and Mendelian frameworks of genetic inheritance.

Lange (1978) rigorously proved the CLT under this model.

Variance Components

If we have a good estimate of ® (and that’s a big IF), then we can perform variance components analysis
to write out the Normal log-likelihood function

l(o2,05;Y,®)

and use numerical methods to form estimates of o2 and o2.

There are a variety of approches for doing this. See, for example, Chapter 8 of MSMGA by Lange, the 1me4
package in R, or the GCTA genomics software.
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Association Testing

Let’s suppose we are interested in testing the hypothesis, Hg : S = Ovs H; : B # 0 for some SNP k.
Assuming that 37" | 3 X5 ~ Y, i Xij, we can approximate:

Y |X ~MVN, (@l + 1 X, 202® + o°1),

where @ = a + 2pg.

Suppose we have estimates 62, <i>, and 62 available. A GLS regression model can then be fit to test the
hypothesis Hy : B = 0vs Hy : B # 0 for each SNP k£ =1,2,...,m.

This linear mixed effects model implementation of the polygenic trait model is utilized to test for
associations between SNPs and a quantitative trait.

Extras

Source
License

Source Code

Session Information

> sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-apple-darwinl5.6.0 (64-bit)
Running under: mac0S 10.15.3

Matrix products: default
BLAS:  /Library/Frameworks/R.framework/Versions/3.6/Resources/1ib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/1ib/1libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] 1lmtest_0.9-37 zoo_1.8-7 broom_0.5.2

[4] carData_3.0-3 forcats_0.5.0 stringr_1.4.0

[7] dplyr_0.8.4 purrr_0.3.3 readr_1.3.1
[10] tidyr_1.0.2 tibble_2.1.3 ggplot2_3.2.1

[13] tidyverse_1.3.0 knitr_1.28

loaded via a namespace (and not attached):

[1] tidyselect_1.0.0 xfun_0.12 haven_2.2.0
[4] lattice_0.20-40 colorspace_1.4-1 vctrs_0.2.3
[7] generics_0.0.2 htmltools_0.4.0 yaml_2.2.1

[10] utf8_1.1.4 rlang 0.4.5 pillar_1.4.3
[13] withr 2.1.2 glue_1.3.1 DBI_1.1.0
[16] dbplyr_1.4.2 modelr_0.1.6 readxl_1.3.1
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[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[491]
[52]

lifecycle_0.1.0
cellranger_1.1.0
labeling 0.3
scales_1.1.0
farver_2.0.3
digest_0.6.25
cli_2.0.2
lazyeval_0.2.2
xml2_1.2.2
assertthat_0.2.1
rstudioapi_0.11
compiler_3.6.0

munsell 0.5.0
rvest_0.3.5
fansi_0.4.1
backports_1.1.5
fs_1.3.1
stringi_1.4.6
tools_3.6.0
crayon_1.3.4
reprex_0.3.0
rmarkdown_2.1
R6_2.4.1

gtable_0.3.0
evaluate_0.14
Rcpp_1.0.3
jsonlite_1.6.1
hms_0.5.3
grid_3.6.0
magrittr_1.5
pkgconfig 2.0.3
lubridate_1.7.4
httr_1.4.1
nlme_3.1-144
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