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Parametric and Nonparametric Inference

Parametric Inference

Parametric inference is based on a family of known probability distributions governed by a defined
parameter space.

The goal is to perform inference (or more generally statistics) on the values of the parameters.

Nonparametric Inference
Nonparametric inference or modeling can be described in two ways (not mutually exclusive):

1. An inference procedure or model that does not depend on or utilize the parametrized probability
distribution from which the data are generated.

2. An inference procedure or model that may have a specific structure or based on a specific formula, but
the complexity is adaptive and can grow to arbitrary levels of complexity as the sample size grows.

In All of Nonparametric Statistics, Larry Wasserman says:

. it is difficult to give a precise definition of nonparametric inference. ... For the purposes of
this book, we will use the phrase nonparametric inference to refer to a set of modern statistical
methods that aim to keep the number of underlying assumptions as weak as possible.

He then lists five estimation examples (see Section 1.1): distributions, functionals, densities, regression curves,
and Normal means.

Nonparametric Descriptive Statistics

Exploratory data analysis methods tend to be nonparametric. Why?

Sometimes the exploratory methods are calibrated by known probability distributions, but they are usually
informative regardless of the underlying probability distribution (or lack thereof) of the data.

Semiparametric Inference

Semiparametric inference or modeling methods contain both parametric and nonparametric components.

An example is X;|u; ~ Normal(u;, 1) and p; % F for some arbitrary distribution F'.



Non-likelihood Inference Topics
A range of parametric and nonparametric topics:

e {-distribution

e Goodness of fit

o Exact tests

e Method of moments

e Permutation methods

e Empirical distribution functions
e Bootstrap

The t Distribution

Normal, Unknown Variance

2

Suppose a sample of n data points is modeled by X, Xo,..., X, £ Normal(u, 0?) where o2 is unknown.

n v_i 2
Recall that S = M is the sample standard deviation.

n—1

The statistic _
X—p

S/v/n

has a t,,_1 distribution, a ¢-distribution with n — 1 degrees of freedom.

Aside: Chi-Square Distribution

Suppose Zi, Za, - .., Zy o3 Normal(0,1). Then Z? + Z2 +---+ Z2 has a x2 distribution, where v is the degrees
of freedom.

This x2 1v has a pdf, expected value equal to v, and variance equal to 2v.

Also,

(n—1)5? 9

o2 ~ Xn—1-

Theoretical Basis of the ¢
Suppose that Z ~ Normal(0,1), X ~ x2, and Z and X are independent. Then —~Z_ has a t, distribution.

vV X/v
X—p

T Normal(0,1) and X and S? are independent (shown later), it follows that the following has a

tn,—1 distribution:

Since

X—p
S/vn’

When Is t Utilized?

e The t distribution and its corresponding CI’s and HT’s are utilized when the data are Normal (or
approximately Normal) and n is small

e Small typically means that n < 30

o In this case the inference based on the ¢ distribution will be more accurate


https://en.wikipedia.org/wiki/Chi-squared_distribution#Probability_density_function

e When n > 30, there is very little difference between using t-statistics and z-statistics

t vs Normal
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t Percentiles

We calculated percentiles of the Normal(0,1) distribution (e.g., z4). We can do the analogous calculation
with the ¢ distribution.

Let ¢, be the a percentile of the ¢ distribution. Examples:

> qt(0.025, df=4) # alpha = 0.025
[1] -2.776445

> qt(0.05, df=4)

[1] -2.131847

> qt(0.95, df=4)

[1] 2.131847

> qt(0.975, df=4)

[1] 2.776445

Confidence Intervals

Here is a (1 — a)-level CI for p using this distribution:
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where as before i = T. This produces a wider CI than the z statistic analogue.
Hypothesis Tests

Suppose we want to test Ho : = po vs Hy : pu # po where g is a known, given number.

The t-statistic is

‘= H : Ho
Vn
with p-value
Pr(|T7| = [t])
where T ~ t,,_1.
Two-Sample t-Distribution
Let X1, Xa,...,Xn, i Normal(uy, o) and Y1,Ya, ..., Y, i Normal(pz, 03) have unequal variances.

We have fi; = X and fi = Y. The unequal variance two-sample t-statistic is

t:ﬂlfﬂQ*(le,uz)
52 s2 ’
2+2

no

Two-Sample t-Distribution

Let X1, Xo,...,X,, id Normal(uy,0?) and Y1,Ys, ..., Yy, id Normal(pz,0?) have equal variance.

We have fi; = X and fis = Y. The equal variance two-sample t-statistic is

:ﬂl—ﬂz—(ul—uz)

52 | 52 '
Vo T

t

where

S (X = X+ T (V- V)

% =
ny+no —2

Two-Sample t-Distributions
When the two populations have equal variances, the pivotal t-statistic follows a t,,, +n,—2 distribution.

When there are unequal variances, the pivotal t-statistic follows a ¢ distribution where the degrees of freedom
comes from an approximation using the Welch—Satterthwaite equation (which R calculates).

Normal-ish Data: “Davis” Data Set



> library("car"
> data("Davis")

> htwt <- tbl_df (Davis)

> htwt

# A tibble: 200 = 5
sex weight height repwt repht
<fct> <int> <int> <int> <int>

1M 7 182 7 180
2 F 58 161 51 159
3 F 53 161 b4 158
4 M 68 177 70 175
5 F 59 157 59 155
6 M 76 170 76 165
7T M 76 167 7 165
8 M 69 186 73 180
9 M 71 178 71 175
10 M 65 171 64 170
# with 190 more rows

Height vs Weight

> ggplot(htwt) +
+ geom_point (aes(x=height, y=weight, color=sex), size=2, alpha=0.5) +
+ scale_colour_manual (values=c("red", "blue"))
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An Error?

> which(htwt$height < 100)
(1] 12
> htwt [12,]
# A tibble: 1 = 5
sex weight height repwt repht
<fct> <int> <int> <int> <int>
1F 166 57 56 163

> htwt[12,c(2,3)] <- htwt[12,c(3,2)]

Updated Height vs Weight

> ggplot(htwt) +
+  geom_point (aes(x=height, y=weight, color=sex), size=2, alpha=0.5) +
+ scale_color_manual (values=c("red", "blue"))

sex
© F
® M
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Density Plots of Height

> ggplot(htwt) +
+ geom_density(aes(x=height, color=sex), size=1.5) +
+ scale_color_manual (values=c("red", "blue"))
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Density Plots of Weight
> ggplot (htwt) +

+ geom_density(aes(x=weight, color=sex), size=1.5) +
+ scale_color_manual (values=c("red", "blue"))
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t.test () Function
From the help file. ..

Usage
t.test(x, ...)

## Default S3 method:
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = O, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

## S3 method for class 'formula'
t.test(formula, data, subset, na.action, ...)

Two-Sided Test of Male Height

> m_ht <- htwt %> filter(sex=="M") 7>}, select(height)
> testresult <- t.test(x = m_ht$height, mu=177)

11
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> class(testresult)

[1] "htest"
> is.list(testresult)
[1] TRUE

Output of t.test()

> names (testresult)

[1] "statistic" "parameter" "p.value" "conf.int"
[56] "estimate" "null.value" "stderr" "alternative"
[9] "method" "data.name"

> testresult
One Sample t-test

data: m_ht$height
t = 1.473, df = 87, p-value = 0.1443
alternative hypothesis: true mean is not equal to 177
95 percent confidence interval:
176.6467 179.3760
sample estimates:
mean of x
178.0114

Tidying the Output

> library(broom)
> tidy(testresult)
# A tibble: 1 = 8
estimate statistic p.value parameter conf.low conf.high

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 178. 1.47 0.144 87 177. 179.
# ... witth 2 more wvariables: method <chr>, alternative <chr>

Two-Sided Test of Female Height

> f_ht <- htwt %>/ filter(sex=="F") 7>}, select(height)
> t.test(x = f_ht$height, mu = 164)

One Sample t-test

data: f_ht$height
t = 1.3358, df = 111, p-value = 0.1844
alternative hypothesis: true mean is not equal to 164
95 percent confidence interval:
163.6547 165.7739
sample estimates:
mean of x
164.7143

12



Difference of Two Means
> t.test(x = m_ht$height, y = f_ht$height)
Welch Two Sample t-test

data: m_ht$height and f_ht$height
t = 15.28, df = 174.29, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
11.57949 15.01467
sample estimates:
mean of x mean of y
178.0114 164.7143

Test with Equal Variances

> htwt >, group_by(sex) >/, summarize(sd(height))
# A tidbble: 2 ¢ 2
sex  “sd(height)"

<fct> <dbl>
1F 5.66
2 M 6.44

> t.test(x = m_ht$height, y = f_ht$height, var.equal = TRUE)
Two Sample t-test

data: m_ht$height and f_ht$height
t = 15.519, df = 198, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
11.60735 14.98680
sample estimates:
mean of x mean of y
178.0114 164.7143

Paired Sample Test (v. 1)

First take the difference between the paired observations. Then apply the one-sample t-test.

> htwt <- htwt 7>J mutate(diffwt = (weight - repwt),
+ diffht = (height - repht))
> t.test(x = htwt$diffwt) %>% tidy()
# A tibdble: 1 = 8
estimate statistic p.value parameter conf.low conf.high

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00546 0.0319 0.975 182 -0.332 0.343
# ... with 2 more wvariables: method <chr>, alternative <chr>
> t.test(x = htwt$diffht) >% tidy()

*

A tibble: 1 z 8

estimate statistic p.value parameter conf.low conf.high
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2.08 13.5 2.64e-29 182 1.77 2.38

13



# ... with 2 more wvariables: method <chr>, alternative <chr>

Paired Sample Test (v. 2)

Enter each sample into the t.test () function, but use the paired=TRUE argument. This is operationally
equivalent to the previous version.
> t.test(x=htwt$weight, y=htwt$repwt, paired=TRUE) 7> tidy()
# A tibdble: 1 = 8
estimate statistic p.value parameter conf.low conf.high

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00546 0.0319 0.975 182 -0.332 0.343
# ... with 2 more wariables: method <chr>, alternative <chr>

> t.test(x=htwt$height, y=htwt$repht, paired=TRUE) %>% tidy(
# A tidbble: 1 = 8
estimate statistic p.value parameter conf.low conf.high

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2.08 13.5 2.64e-29 182 1.77 2.38
# . with 2 more wvariables: method <chr>, alternative <chr>
>
> htwt 7>} select(height, repht) %>/ na.omit() %>
+  summarize(mean(height), mean(repht))
# A tidbble: 1 = 2
“mean(height)~ “mean(repht)"
<dbl> <dbl>
1 171. 168.

Goodness of Fit

Rationale
Sometimes we want to figure out which probability distribution is a reasonable model for the data.

This is related to nonparametric inference in that we wish to go from being in a nonparametric framework to
a parametric framework.

Goodness of fit (GoF) tests allow one to perform a hypothesis test of how well a particular parametric
probability model explains variation observed in a data set.

Chi-Square GoF Test

Suppose we have data generating process X1, Xo,..., X, 5 F for some probability distribution F'. We wish
to test Hy: F € {Fp:0 € Oy} vs Hy : not Hy. Suppose that @ is d-dimensional.

Divide the support of {Fg : 8 € O} into k bins I, I, ..., I.

For j =1,2,...,k, calculate

q;(0) = /1 dFg(x).

J

Suppose we observe data z1,%2,...,2,. For j =1,2,...,k, let n; be the number of values z; € I;.

Let 61,04, ...,0, be the values that maximize the multinomial likelihood

14



k
[Ta0).

j=1

Form GoF statistic

S((L‘) _ zk: (TL]- — an'N(é»

j=1 ng; (9)
When Hy is true, S ~ x2 where v = k—d— 1. The p-value is calculated by Pr(S* > s(z)) where S* ~ x?_,_;.

Example: Hardy-Weinberg

Suppose at your favorite SNP, we observe genotypes from 100 randomly sampled individuals as follows:

AA AT TT
28 60 12

If we code these genotypes as 0, 1, 2, testing for Hardy-Weinberg equilibrium is equivalent to testing whether
X1, X5,..., X100 id Binomial(2, #) for some unknown allele frequency of T, 6.

The parameter dimension is such that d = 1. We will also set k& = 3, where each bin is a genotype. Therefore,
we have ny = 28, no = 60, and n3 = 12. Also,

@(0) =(1-0)% q0) =2001—-10), q3(0) =06

Forming the multinomial likelihood under these bin probabilities, we find § = (ng + 2n3)/(2n). The degrees
of freedom of the x?2 null distributionisv=%k—-d—-1=3-1-1=1.

Let’s carry out the test in R.

n <- 100
nj <- c(28, 60, 12)

>
>
>
> # parameter estimates

> theta <- (nj[2] + 2*nj[3])/(2*n)

> qj <- c((1-theta)”2, 2+theta*(l-theta), theta™2)
>
>
>
>

# gof statistic
s <= sum((nj - n*qj)~2 / (n*xqj))
s

[1] 5.36048

>

> # p-value

> 1-pchisq(s, df=1)

[1] 0.02059811

Let’s use the HardyWeinberg R package.

> library(HardyWeinberg)
> x <- c(28, 60, 12)

15



> names(x) <- c("AA", "AT", "TT")

> HWChisq(x, cc=0)

Chi-square test for Hardy-Weinberg equilibrium (autosomal)

Chi2 = 5.36048 DF = 1 p-value = 0.02059811 D = 5.64 £ = -0.2315271

Exact Tests

Definition

An exact test is a hypothesis test where the distribution of the test statistics is known exactly when the
null hypothesis is true.

An example is the one-sample t-test when the data are exactly iid Normal-distributed. This is not realistic
(when do you know data are exactly Normal?), but there are real examples where exact tests are compelling.

Fisher’s Exact Test of Independence

Suppose X1,Xo,..., X, i Bernoulli(p) and Y3,Ys,...,Y, i Bernoulli(q). We observed pairs
(X1,Y7),...,(X,,Y,), and we want to test if X and Y are independent rv’s.

Let N, be the number of observed (z,y) pairs for z,y € {0,1}.

We can calculate a statistic based on N, that does not depend on p or q.

Tabulated Data

We observe ngg = a,n91 = b,n19 = ¢,n11 = d. Compile this into a table:

Y=0 Y=1 Totals

X =0 a b a+b
X =1 c d c+d
Totals a+c¢c b+d n

Probability of Observed Data
PI‘(NOO = CL|N00 + N01 =a + b, NOO + N10 = a + C) =

("))
(a're)

This does not depend on p or ¢!

P-value

Calculating Fisher exact test p-value can be confusing and/or controversial. Here is one way to get a two-sided
test P-value.

Consider all a*, b*, ¢*, d* such that a* +b* = a+ b and ¢* + d* = ¢+ d. We need to keep the conditional part
of the probability intact.
The p-value is the sum of probabilities over all configurations such that

Pr(Noo = a*|Noo + No1 = a* + 0", Ngg + Nyg = a* +¢*) <

16



PI(NOO = CL|N0() + No1 =a+b,Ngg+ Nig =a+ C)

Example: Self-Isolation and Infection
X = self-isolation (no or yes)

Y = infection (no or yes)

X=0 1 9 10
X=1 11 3 14
Totals 12 12 24

> x <- matrix(c(1, 9, 11, 3), nrow=2, byrow=TRUE)
> fisher.test(x)$p.value

[1] 0.002759456

> fisher.test(x, alternative="less")$p.value

[1] 0.001379728

> fisher.test(x, alternative="greater")$p.value
[1] 0.9999663

Other Scenarios
Fisher’s exact test has been derived for cases where X and Y are mulinomial.

There is a one-dimensional Fisher’s exact test. A great example of this is Fisher’s exact test of HWE.

Fisher’s Exact Test of HWE

Suppose at your favorite SNP, we observe genotypes from 100 randomly sampled individuals as follows:

AA AT TT
28 60 12

Let’s do Fisher’s exact test of HWE on these data.
Observe naa = 28, nar = 60, npr = 12 with n = 100 observed genotypes.
We also observe marginal allele counts, n4 = 116, np = 84.

Let p be the true allele frequency of T. Then, under HWE,

Pr(Naa =naa, Nar = nar, Nrr = npp|Ng = na, Np =nr)

_ Pr(Naa = naa, Nar = nar, Nrr = nrr)
Pr(Na =na, Ny = nr)
n 2n n 2n
(nAA nar nTT)(l —p)A4(2p(1 — p))naTpnTT
(") (1 = p)raprr
( n )QnAT

MAA MAT NTT

(nr)

Let’s use the HardyWeinberg R package to perform an exact test of HWE.

17



library(HardyWeinberg)

x <- c(28, 60, 12)

names(x) <- c("AA", "AT", "TT")

HWExact (x)

Haldane Exact test for Hardy-Weinberg equilibrium (autosomal)
using SELOME p-value

sample counts: nAA = 28 nAT = 60 nTT = 12

HO: HWE (D==0), H1: D <> 0O

D = 5.64 p-value = 0.02565977

vV V V V

Let’s compare the result to the x? goodness of fit test and the generalized likelihood ratio test.

> HWChisq(x, cc=0) # chi-square gof

Chi-square test for Hardy-Weinberg equilibrium (autosomal)

Chi2 = 5.36048 DF = 1 p-value = 0.02059811 D = 5.64 £ = -0.2315271
>

> HWLratio(x) # generalized lrt

Likelihood ratio test for Hardy-Weinberg equilibrium

G2 = 5.467661 DF = 1 p-value = 0.01937154

Method of Moments

Rationale

Suppose that X1, Xo,..., X, I P By the strong law of large numbers we have, as n — 0o

n k
Zi:’é Xi ﬂ EF [Xk:l

when Egp [Xk] exists.

This means that we can nonparametrically estimate the moments of a distribution. Also, in the parametric
setting, these moments can be used to form parameter estimates.

Definition

Suppose that X1, Xo,..., X, id Fg where 0 is d-dimensional.

Calculate moments E [Xk] for k=1,2,...,d where d > d.

For each parameter j =1,2,...,d, solve for §; in terms of E [X*] for k =1,2,...,d".

The method of moments estimator of §; is formed by replacing the function of moments E [X k] that equals

¢; with the empirical moments Y, XF/n.

Example: Normal

For a Normal(u, 0?) distribution, we have

E[X] =p

E[X? =0°+p°

Solving for p and o2, we have u = E[X] and 0% = E[X?] — E[X]?. This yields method of moments estimators

18



Example: Balding-Nichols Model
In the BN model, we have

Zl‘Q’L ~ Binomial(Z, Qz)
independently for ¢ = 1,2,...,n, and

iid

Ql)QQa"'aQn ~ BN(p7f)

Recall that, marginally, Z1, Zs, ..., Z, are iid.
We showed that

E[Z] = 2p and Var[Z] = 2p(1 —p)(1 + f).
Therefore,

E[Z]

p="1 and f = Var[Z]

E[Z](1 - E[Z]/2)

-1
To estimate p and f, replace E[Z] and Var[Z] with estimates:

N noz2 AN
Var[Z]:Ez:nl 7 _(Zznl 1>

Exercise: RNA-Seq
Recall the Gamma-Poisson distribution of RNA-Seq data covered in Week 3.

Derive the method-of-moments estimates of o and § from that model.

Exploring Goodness of Fit

As mentioned above, moments can be nonparametrically estimated. At the same time, for a given parametric
distribution, these moments can also be written in terms of the parameters.

For example, consider a single parameter exponential family distribution. The variance is going to be defined
in terms of the parameter. At the same time, we can estimate variance through the empirical moments

n n 2
Zi:l Xi2 _ [Zi—l XZ} )

n n

In the scenario where several sets of variables are measured, the MLEs of the variance in terms of the single
parameter can be compared to the moment estimates of variance to assess goodness of fit of that distribution.
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Permutation Methods

Rationale
Permutation methods are useful for testing hypotheses about equality of distributions.
Observations can be permuted among populations to simulate the case where the distributions are equivalent.

Many permutation methods only depend on the ranks of the data, so they are a class of robust methods for
performing hypothesis tests. However, the types of hypotheses that can be tested are limited.

Permutation Test
Suppose X1, Xa,..., Xpm M Py and 1,Ys,....Y, 9 By
We wish to test Ho : Fx = Fy vs Hy : Fx # Fy.

Consider a general test statistic S = S(X1, Xa,..., X, Y1,Ys,...,Y,) so that the larger S is the more
evidence there is against the null hypothesis.

Under the null hypothesis, any reordering of these values, where m are randomly assigned to the “X”
population and n are assigned to the “Y” population, should be equivalently distributed.

For B permutations (possibly all unique permutations), we calculate

g ) _ g (Z;‘(b), AN O/ N Z;;(i)n)
where Zl*(b), Zg(b), ey Z;T(b), Z,*n(i)l, ceey Z:n(j)_)n is a random permutation of the values X1, Xo, ..., X, Y1,Ys, ...

Example permutation in R:

>z <- c(x, y)
> zstar <- sample(z, replace=FALSE)

The p-value is calculated as proportion of permutations where the resulting permutation statistic exceeds the
observed statistics:

B

31 (S*(b) > S) :

b=1

p-value(s) =

Wl =

This can be (1) an exact calculation where all permutations are considered, (2) a Monte Carlo approximation
where B random permutations are considered, or (3) a large min(m,n) calculation where an asymptotic
probabilistic approximation is used.

Wilcoxon Rank Sum Test
Also called the Mann-Whitney-Wilcoxon test.

Consider the ranks of the data as a whole, X1, Xo,..., X,,,,Y1,Ys,...,Y,,, where r(X;) is the rank of X; and
r(Y;) is the rank of Y. Note that r(-) € {1,2,...,m + n}. The smallest value is such that 7(X;) =1 or
r(Y;) = 1, the next smallest value maps to 2, etc.

Note that

(m—i—n)(m—&—n—i—l).

1 J

(Y =
1

m n

7
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The statistic W is calculated by:

Ry =Y r(X) Ry =) r(Y))
i=1 j=1
1
Wy = Ry — @
W = min(WX, Wy)

In this case, the smaller W is, the more significant it is. Note that mn — W = max(Wx, Wy ), so we just as
well could utilize large max(Wx, Wy ) as a test statistic.

Wilcoxon Signed Rank-Sum Test

The Wilcoxon signed rank test is similar to the Wilcoxon two-sample test, except here we have paired
observations (X1, Y1), (X2,Y2),..., (X, Yy).

An example is an individual’s clinical measurement before (X) and after (Y') treatment.
In order to test the hypothesis, we calculate 7(X;,Y;) = r(|Y; — X;|) and also s(X;,Y;) = sign(¥; — X;).
The test statistic is |WW| where
W= r(X;,Y:)s(X;,Y5).
i=1
Both of these tests can be carried out using the wilcox.test () function in R.

wilcox.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

Examples

Same population mean and variance.

> x <- rnorm(100, mean=1)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction
data: x and y

W = 5596, p-value = 0.1457
alternative hypothesis: true location shift is not equal to 0

> qgplot(x, y); abline(0,1)
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Same population mean and variance. Large sample size.

> x <- rnorm(10000, mean=1)
> y <- rexp(10000, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction
data: x and y

W = 54175539, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to O

> qgplot(x, y); abline(0,1)
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Same mean, very different variances.

> x <- rnorm(100, mean=1, sd=0.01)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction
data: x and y

W = 5435, p-value = 0.2884
alternative hypothesis: true location shift is not equal to O

> qgplot(x, y); abline(0,1)
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Same variances, different means.

> x <- rnorm(100, mean=2)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction
data: x and y

W = 7672, p-value = 6.687e-11
alternative hypothesis: true location shift is not equal to O

> qgplot(x, y); abline(0,1)
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Same population mean and variance.

> x <- rnorm(100, mean=1)
> y <- rexp(100, rate=1)
> wilcox.test(x, y, paired=TRUE)

Wilcoxon signed rank test with continuity correction
data: x and y

V = 2838, p-value = 0.2826
alternative hypothesis: true location shift is not equal to O

> hist(y-x)
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Same population mean and variance. Large sample size.

> x <- rnorm(10000, mean=1)
> y <- rexp(10000, rate=1)
> wilcox.test(x, y, paired=TRUE)

Wilcoxon signed rank test with continuity correction
data: x and y

V = 26199685, p-value = 3.371e-05
alternative hypothesis: true location shift is not equal to O

> hist(y-x)
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Permutation t-test

As above, suppose X1, Xo,..., X id Fx and Y1,Y5,...,Y, id Fy, and we wish to test Hy : Fix = Fy vs

H, : Fx # Fy. However, suppose we additionally know that Var(X) = Var(Y’). We can use a t-statistic to
test this hypothesis:

8
\
|= <

-l s
+
3
»
[ V)

where s? is the pooled sample variance.

To obtain the null distribution, we randomly permute the observations to assign m data points to the X sample
and n to the Y sample. This yields permutation data set z* = (2], 23,...,25,)7 and y* = (yi,y5, ..., y5)T.
We form null t-statistic

. T* _y*
Gt 3

2%

where again s°* is the pooled sample variance.
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In order to obtain a p-value, we calculate t*() for b=1,2,..., B permutation data sets.

The p-value of ¢ is then the proportion of permutation statistics as or more extreme than the observed
statistic:

B
1
pvalue(t) = = 31 (|t*<b>| > |t\> .
b=1

Empirical Distribution Functions

Definition

Suppose X1, Xo,..., X, X F. The empirical distribution function (edf) — or empirical cumulative

distribution function (ecdf) — is the distribution that puts probability 1/n on each observed value X;.
Let 1(X; <y)=1if X; <yand 1(X; <y)=0if X; > y.

~ 1
Random variable: Fx(y) = - 1(X; <vy)
i=1
. - 1 ¢
Observed variable: Fy(y) = - 1(z; <vy)
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Example: Normal
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Pointwise Convergence

Under our assumptions, by the strong law of large numbers for each y € R,

N

Fx(y) == F(y)

as n — oQ.

Glivenko-Cantelli Theorem

Under our assumptions, we can get a much stronger convergence result:

N

sup | Fx (y) — F(y)| = 0
yER

as n — 0o. Here, “sup” is short for supremum, which is a mathematical generalization of maximum.

This result says that even the worst difference between the edf and the true cdf converges with probability 1
to zero.
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Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality

This result gives us an upper bound on how far off the edf is from the true cdf, which allows us to construct
confidence bands about the edf.

Pr (sup

Fx (y) — F(y)’ > e) < 920
yeR

As outlined in All of Nonparametric Statistics, setting

L(y) = max{Fx (y) — €, 0}

U(y) = min{Fx (y) + €, 1}

guarantees that Pr(L(y) < F(y) <U(y) for all y) > 1 — a.

Statistical Functionals

Definition
A statistical functional T'(F') is any function of F'. Examples:

¢ () = [ 2dF ()
o o*(F) = [(z — p(F))*dF(z)
o median(F) = F~1(1/2)

A linear statistical functional is such that T'(F) = [ a(z)dF(z).

Plug-In Estimator

A plug-in estimator of T(F) based on the edf is T'(Fx ). Examples:
e f=pFx) = [oFx(x) =130 X;
v 2= 0% (Fx) = [(x = 1) Fx () = 3 S0, (X0 — )
o median(Fx) = Fx'(1/2)

EDF Standard Error
Suppose that T'(F) = [a(z)dF(z) is a linear functional. Then:

Var(T(Fx)) = % ZVar(a(Xi)) = w
se(T(Fx)) = VarFEj(X))
< (T(FX)) _ Varﬁxna(X))

Note that



waunz/wm—ﬂmﬁwm

because T(F) = [a(z)dF(z) = Epla(X)]. Likewise,

Varp (a(X)) =

S|

> (a(Xi) = T(Fx))?
i=1
where T(Fx) = 1 3" a(X;).

EDF CLT

Suppose that Varp(a(X)) < co. Then we have the following convergences as n — oco:

Varg (a(X)) p  se(T(Fx)) P
Varg(a(X)) — 1 se(T(Fx)) 1

T(F) — T(Fx)
se(T(Fx))

The estimators are very easy to calculate on real data, so this a powerful set of results.

2, Normal(0, 1)

Kolmogorov—Smirnov Test

A GoF Test

The KS test is a goodness of fit test that can be used to compare a sample of data to a particular distribution,
or to compare two samples of data.

The former is a parametric GoF test, and the latter is a nonparametric test of equal distributions.

One Sample KS Test

iid

Suppose we have data generating process X1, Xo,...,X,, ~ F for some probability distribution F'. We wish
to test Hy : F' = Fg vs Hy : F # Fy for some parametric distribution Fyp.

For observed data x1,x2,...,x, we form the edf F,, and test-statistic
D(x) = sup | Fa(2) — Fa(2).

The null distribution of this test can be approximated based on a stochastic process called the Brownian
bridge.

Two Sample KS Test

Suppose X1, Xo,..., X, id Fx and Y1,Ys,....,Y, id Fy. We wish to test Hy : Fx = Fy vs Hy : Fx # Fy.

For observed data x1,zo,...,z, and y1,¥ys,...,y, we form the edf’s F, and ﬁ’y We then form test-statistic
D(x,y) = sup | Fp(z) — Fy(z) .
z
The null distribution of this statistic can be approximated using results on edf’s.
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Both of these tests can be carried out using the ks.test () function in R.

ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)

Example: Exponential vs Normal

Two sample KS test.

> x <- rnorm(100, mean=1)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction

data: x and y

W = 4957, p-value = 0.9173

alternative hypothesis: true location shift is not equal to O
> ks.test(x, y)

Two-sample Kolmogorov-Smirnov test
data: x and y

D = 0.19, p-value = 0.0541
alternative hypothesis: two-sided

> qqgplot(x, y); abline(0,1)
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One sample KS tests.

> ks.test(x=x, y="pnorm")
One-sample Kolmogorov-Smirnov test

data: x

D = 0.37038, p-value = 2.429e-12
alternative hypothesis: two-sided
>

> ks.test(x=x, y="pnorm", mean=1)
One-sample Kolmogorov-Smirnov test
data: x

D = 0.064807, p-value = 0.795
alternative hypothesis: two-sided

Standardize (mean center, sd scale) the observations before comparing to a Normal(0,1) distribution.
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> ks.test(x=((x-mean(x))/sd(x)), y="pnorm")
One-sample Kolmogorov-Smirnov test

data: ((x - mean(x))/sd(x))

D = 0.037869, p-value = 0.9988
alternative hypothesis: two-sided
>

> ks.test(x=((y-mean(y))/sd(y)), y="pnorm")
One-sample Kolmogorov-Smirnov test

data: ((y - mean(y))/sd(y))
D = 0.17723, p-value = 0.00374
alternative hypothesis: two-sided

Bootstrap

Rationale
Suppose X1, Xa,..., X, 5 F.If the edf Fx is an accurate approximation for the true cdf F', then we can
utilize F'x in place of F' to nonparametrically characterize the sampling distribution of a statistic T'(X).

This allows for the sampling distribution of more general statistics to be considered, such as the median or
a percentile, as well as more traditional statistics, such as the mean, when the underlying distribution is
unknown.

When we encounter modeling fitting, the bootstrap may be very useful for characterizing the sampling
distribution of complex statistics we calculate from fitted models.

Big Picture
We calculate T'(x) on the observed data, and we also form the edf, Ey.

To approximate the sampling distribution of T'(X) we generate B random samples of n iid data points from

F,, and calculate T(x*®) for each bootstrap sample b = 1,2, ..., B where 2*(®) = (xi(b), x;(b), ... ,x;(b))T.
Sampling X7,..., X} i F, is accomplished by sampling n times with replacement from the observed data
T1,y,L2y+.y Ly

This means Pr (X* = z;) = L for all j.

T n

Bootstrap Variance

x;i(b))T, calculate bootstrap statistic T'(z*(®)).

For each bootstrap sample z*(®) = (x’{(b), x;(b), ceey
Repeat this for b=1,2,..., B.

Estimate the sampling variance of T'(x) by

Var(T'(z)) = ]1323: (T (w*(w) _ % ZB:T (w*(m))

b=1 k=1
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Caveat
Why haven’t we just been doing this the entire time?!
In All of Nonparametric Statistics, Larry Wasserman states:

There is a tendency to treat the bootstrap as a panacea for all problems. But the bootstrap
requires regularity conditions to yield valid answers. It should not be applied blindly.

The bootstrap is easy to motivate, but it is quite tricky to implement outside of the very standard problems.
It sometimes requires deeper knowledge of statistical theory than likelihood-based inference.
Bootstrap Sample

For a sample of size n, what percentage of the data is present in any given bootstrap sample?
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Bootstrap Confidence Intervals

Bootstrap Cls
Suppose that § = T'(F) and 0= T(Fm)

We can use the bootstrap to generate data from F,.
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Forb=1,2,..., B, we draw wi(b), a:;(b), . ,x:(b) as iid realiztions from Fw, and calculate *®) = T(Fm*w)).
Let p’, be the a percentile of {é*(l), 6+ . ,é*(B)}.

Let’s discuss several ways of calculating confidence intervals for § = T'(F').

Invoking the CLT

If we have evidence that the central limit theorem can be applied, we can form the (1 — «) CI as:

(é — |2a /2] se*,é—i— |20 /2] s€”)

where se* is the bootstrap standard error calculated as

1 & 1 & ’
* § A*b_7§ Hx(k
T Eb—1 (9() Bk—10()> .

A

Note that se* serves as estimate of se(6).

Note that to get this confidence interval we need to justify that the following pivotal statistics are approximately
Normal(0,1):

6—60 06-0

se(f) se*

Q

Percentile Interval

If a monotone function m(-) exists so that m (é) ~ Normal(m(6),b?), then we can form the (1 — «) CI as:

(pZ/vaik—(x/2>
where recall that in general p} is the « percentile of bootstrap estimates {é*(l), é*(2), ey é*(B)}

Pivotal Interval

Suppose we can calculate percentiles of 6—0, say ¢o. Note that the o percentile of 6 is Ga+0. Thel —a CI
is

~ ~

(0 —q1—a/2s 0 — qoc/Q)

which comes from:

1—a=Pr(gy < 0—0< Q1-a/2)
= Pr(—ql_a/z <0- 0 < *q(x/2)
= Pr(é —Qi-ap2 <0< 0 — Qa/2)

Suppose the sampling distribution of 6* — 0 is an approximation for that of 6—6.

If p} is the a percentile of 6+ then, p} — 0 is the « percentile of o* — 0.
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Therefore, p?, — @ is the bootstrap estimate of g,. Plugging this into (é— Q—a/2; 6— da/2), We get the following
(1 — «) bootstrap CI:

(Qé —Pl_aj2 20 *PZ/Q) :

Studentized Pivotal Interval

In the previous scenario, we needed to assume that the sampling distribution of 0* — 0 is an approximation
for that of § — 0. Sometimes this will not be the case and instead we can studentize this pivotal quantity.
That is, the distribution of

is well-approximated by that of

Let 2% be the a percentile of

Then a (1 — ) bootstrap CI is
(9 = 2{_q 250 (9) 0 — 24 j25€ (é)) .

Exercise: Why?

How do we obtain se (é) and se (é*(b))?

If we have an analytical formula for these, then se(f) is calculated from the original data and se(6*®) from
the bootstrap data sets. But we probably don’t since we’re using the bootstrap.

Instead, we can calculate:

2
R 1 A 1 A
& — . *(b) _ *(k
s (0) = BZ<9” = 19<>>.
This is what we called se* above. But what about se (é*(b)>7

To estimate se (é*(b)) we need to do a double bootstrap. For each bootstrap sample b we need to bootstrap

that daat set another B times to calculate:
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o]

R 1 B/ 1 B 2
G (0*(b)> -\ 3 z; (9*@)*(”) _ ng*(b)*(k))
v= =1

where §*®)*(*) ig the statistic calculated from bootstrap sample v within bootstrap sample b. This can be
very computationally intensive, and it requires a large sample size n.

Bootstrap Hypothesis Testing

General Approach

The general approach is to calculate a test statistic based on the observed data. Then the null distribution of
this statistic is approximated by forming bootstrap test statistics under the scenario that the null hypothesis
is true. This can often be accomplished because the 0 estimated from the observed data is the population
parameter from the bootstrap distribution.

Example: t-test

Suppose X1, Xa,...,Xm i Fx and Y1,Y5,....)Y, id Fy. We wish to test Hy : u(Fx) = p(Fy) vs
Hy : p(Fx) # p(Fy). Suppose that we know o2(Fx) = o2(Fy) (if not, it is straightforward to adjust the
proecure below).

Our test statistic is

where s? is the pooled sample variance.
Note that the bootstrap distributions are such that p(Fx-) = Z and pu(Fy-) = 7. Thus we want to center the
bootstrap t-statistics about these known means.

Specifically, for a bootstrap data set * = (2, 23, ..., 25)7 and y* = (y§,y5,...,y5)T, we form null t-statistic

T -y - (T-Y

t* =
1 1 2%
( +7)s
where again s2* is the pooled sample variance.
In order to obtain a p-value, we calculate t*® for b= 1,2, ..., B bootstrap data sets.

The p-value of ¢ is then the proportion of bootstrap statistics as or more extreme than the observed statistic:

B
1
p-value(t) = B E 1 (|t*(b)| > |t\) .
b=1

Parametric Bootstrap
Suppose X1, Xo,..., X, id Fy for some parametric Fy. We form estimate 9, but we don’t have a known
sampling distribution we can use to do inference with 6.

The parametric bootstrap generates bootstrap data sets from F} rather than from the edf. It proceeds as we
outlined above for these bootstrap data sets.
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Bootstrap Example

Example: Exponential Data

Let’s construct a pivotal bootstrap CI of the median for the following Exponential()) data:

> set.seed(1111)
> pop.mean <- 2
> X <- matrix(rexp(1000%30, rate=1/pop.mean), nrow=1000, ncol=30)

> # population median 2*log(2)

> pop_med <- qexp(0.5, rate=1/pop.mean); pop_med

[1] 1.386294

>

> obs_meds <- apply(X, 1, median)

> plot(density(obs_meds, adj=1.5), main=" "); abline(v=pop_med)

0.8 1.0

Density
0.6

0.4

0.2

I I I I I
0.5 1.0 15 2.0 2.5

N =1000 Bandwidth =0.1155

Some embarrassingly inefficient code to calculate bootstrap medians.

> B <- 1000
> boot_meds <- matrix(0, nrow=1000, ncol=B)
>

39

3.0




> for(b in 1:B) {

+  idx <- sample(1:30, replace=TRUE)

+  boot_meds[,b] <- apply(X[,idx], 1, median)
+ }

Plot the bootstrap medians.

> plot(density(obs_meds, adj=1.5), main=" "); abline(v=pop_med)
> lines(density(as.vector(boot_meds[1:4,]), adj=1.5), col="red")
> lines(density(as.vector(boot_meds), adj=1.5), col="blue")

0.8 1.0
I

Density
0.6

0.4

0.2

I I I I I I
0.5 1.0 15 2.0 2.5 3.0

N =1000 Bandwidth =0.1155
Compare sampling distribution of 6—6toh* — 0.

> v <- obs_meds - pop_med
> w <- as.vector(boot_meds - obs_meds)
> qgplot(v, w, pch=20); abline(0,1)
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-0.5 0.0 0.5 1.0

Does a 95% bootstrap pivotal interval provide coverage?

ci_lower <- apply(boot_meds, 1, quantile, probs=0.975)
ci_upper <- apply(boot_meds, 1, quantile, probs=0.025)

ci_lower <- 2*obs_meds - ci_lower
ci_upper <- 2*obs_meds - ci_upper

V V V V V V V

ci_lower[1]; ci_upper[1]

[1] 0.8958224

[1] 2.163612

>

> cover <- (pop_med >= ci_lower) & (pop_med <= ci_upper)
> mean(cover)

[1] 0.808
>
> # :—(

Let’s check the bootstrap variances.

> sampling_var <- var(obs_meds)
> boot_var <- apply(boot_meds, 1, var)
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> plot(density(boot_var, adj=1.5), main=" ")

> abline(v=sampling_var)

Density

0.0

I
0.2

I
0.4

0.6

N =1000 Bandwidth =0.03113

We repeated this simulation over a range of n and B.

n B coverage avg CI width
le+02 1000 0.868 0.7805404
le+02 2000 0.872 0.7882278
le+02 4000 0.865 0.7852837
le+02 8000 0.883 0.7817222
le+03 1000 0.923 0.2465840
le+03 2000 0.909 0.2477463
le+03 4000 0.915 0.2475550
le+03 8000 0.923 0.2458167
le+04 1000 0.935 0.0781421
le+04 2000 0.937 0.0784541
le+04 4000 0.942 0.0784559
le+04 8000 0.948 0.0785591
le+05 1000 0.949 0.0246918
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n B coverage avg CI width
le+05 2000 0.942 0.0246938

Extras

Source
License

Source Code

Session Information

> sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-apple-darwinl5.6.0 (64-bit)
Running under: macOS 10.15.3

Matrix products: default
BLAS:  /Library/Frameworks/R.framework/Versions/3.6/Resources/1ib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/1ib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] broom_0.5.2 car_3.0-6

[3] carData_3.0-3 HardyWeinberg_1.6.3
[5] Rsolnp_1.16 mice_3.8.0

[7] forcats_0.5.0 stringr_1.4.0

[9] dplyr_0.8.4 purrr_0.3.3

[11] readr_1.3.1 tidyr_1.0.2

[13] tibble_2.1.3 gegplot2_3.2.1

[15] tidyverse_1.3.0 knitr_1.28

loaded via a namespace (and not attached):

[1] Rcpp_1.0.3 lubridate_1.7.4 lattice_0.20-40
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